Cell-based therapies have the potential to treat many currently incurable degenerative diseases by replacing missing or damaged tissues or by generating cells with unique biological activity at the disease site. The Nagy group is creating ‘designer’ cells that incorporate pre-engineered functional elements to confer novel therapeutic features. These features include inducing allograft tolerance, reducing tumour risk, live cell tracking and cell sensors and expressing local-acting secreted biologics. These functional elements act as building blocks, which can be combined and customised for cell therapy applications across various species and disease models.

Research

The Nagy group’s research efforts are highly collaborative and coordinated with their sister-lab in Canada. At ARMI, the Nagy group is predominantly focused on developing cell therapies for brain injury, stroke and multiple sclerosis. The group works within mouse, human and nonhuman primate pluripotent stem cell systems using technologies such as CRISPR/Cas9-mediated genome editing, somatic cell reprogramming, directed differentiation and piggyBac transposasemediated gene transfer. To learn more about the Toronto-based Nagy group and research interests, see http://research.lunenfeld.ca/nagy.

⦁    Molecular drivers of reprogramming – Our “Project Grandiose” (PG) generated a genome-wide, multi-omics, almost daily resolution characterization of the reprogramming process from somatic cells to induced pluripotent stem cells (iPSCs) [1-6]. Further mining of this unprecedented resource and target validation in the coming years will bring additional insight into the process of cell state change, teaching us how to generate alternative cell types with therapeutic relevance.

⦁    Alternative cell states – We also discovered and characterized a new class of iPSCs called F-class cells [6]. Compared to embryonic stem cells (ESCs) and ESC-like iPSCs, these cells proliferate faster, are less heterogeneous, are amenable to suspension culture expansion, and exhibit a higher propensity to differentiate toward the neuronal lineage. Previously, the Haigh and Nagy labs described another novel cell type called induced vascular progenitor cells (iVPCs) that retain endothelial cell memory [7]. These papers demonstrate that there are more applications for reprogramming beyond simply generating ESC-like pluripotent cells. PG has begun to illuminate the complex process of reprogramming and provides us with an extraordinary opportunity to generate and study alternative cell states of significant therapeutic potential.

⦁    Therapeutic cells – Our research aims to generate mouse and human therapeutic cell types for replacement therapies. We work with several disease models, including diabetes, blindness [8], arthritis, spinal cord injury [9], and stroke [10], and in vitro and in vivo cell types. Building upon decades of experience with transgenic mouse engineering, we are also working to make cells safer and more effective for transplantation by introducing novel functions, such as an inducible suicide switch, secreted therapeutics (e.g. VEGF “sticky-traps” [8]), anti-inflammatory ability and enhanced homing.

⦁    Gene therapy – Another research focus that has emerged from our extensive experience with transposon-mediated genetic engineering includes novel applications for gene therapy. In collaboration with Ian Alexander’s lab we developed a hybrid recombinant adeno-associated virus (rAAV)/piggyBac transposon vector system combining the liver-targeting properties of rAAV with stable piggyBac-mediated transposition of a transgene into the genome of liver cells. [11] Using this system, we effectively reversed the disease phenotype in two mouse models of urea cycle defects. Clinical translation of this technology could provide a bridging therapy for infants with severe urea cycle defects while awaiting liver transplantation. We are also exploiting new CRISPR/Cas9-mediated techniques for genome editing to further expand our “toolkit” in this area of research.

⦁    Combining cell and gene therapy – We propose to extend the use of cells beyond their own therapeutic effect by delivering transgene products to the diseases site. Such an extension of cell therapy could maximize the benefit of treatments by synergizing the effects of the two therapies. For example, we are working to introduce local acting anti-angiogenic VEGF “sticky-traps” [8] into retinal pigmented epithelial (RPE) cells to develop a novel cell therapy for the wet form of age-related macular degeneration. Incorporating VEGF sticky-traps into other therapeutic cell types may also provide improved angiostatic regulation for other diseases involving pathological neovascularisation.  

References

1.   Benevento M, et al., Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks. Nat Commun, 2014. 5: p. 5613. http://www.ncbi.nlm.nih.gov/pubmed/25494451

2.   Clancy JL, et al., Small RNA changes en route to distinct cellular states of induced pluripotency. Nat Commun, 2014. 5: p. 5522. http://www.ncbi.nlm.nih.gov/pubmed/25494340

3.   Hussein SM, et al., Genome-wide characterization of the routes to pluripotency. Nature, 2014. 516(7530): p. 198-206. http://www.ncbi.nlm.nih.gov/pubmed/25503233

4.   Lee DS, et al., An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nat Commun, 2014. 5: p. 5619. http://www.ncbi.nlm.nih.gov/pubmed/25493341

5.   Shakiba N, et al., CD24 tracks divergent pluripotent states in mouse and human cells. Nat Commun, 2015. 6: p. 7329. http://www.ncbi.nlm.nih.gov/pubmed/26076835

6.   Tonge PD, et al., Divergent reprogramming routes lead to alternative stem-cell states. Nature, 2014. 516(7530): p. 192-7. http://www.ncbi.nlm.nih.gov/pubmed/25503232 

7.   Haenebalcke L, et al., The ROSA26-iPSC mouse: a conditional, inducible, and exchangeable resource for studying cellular (De)differentiation. Cell Rep, 2013. 3(2): p. 335-41. http://www.ncbi.nlm.nih.gov/pubmed/23395636

8.   Michael IP, et al., Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Mol Med, 2014. 6(5): p. 604-23. http://www.ncbi.nlm.nih.gov/pubmed/24705878

9.   Salewski RP, et al., The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway. Stem Cells Dev, 2013. 22(3): p. 383-96. http://www.ncbi.nlm.nih.gov/pubmed/22889305

10. Faiz M, et al., Adult Neural Stem Cells from the Subventricular Zone Give Rise to Reactive Astrocytes in the Cortex after Stroke. Cell Stem Cell, 2015. 17(5): p. 624-34. http://www.ncbi.nlm.nih.gov/pubmed/26456685

11. Cunningham SC, et al., Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adeno-associated virus/piggyBac transposase gene delivery system. Hepatology, 2015. 62(2): p. 417-28. http://www.ncbi.nlm.nih.gov/pubmed/26011400

 
 
 
 
 

Featured Publications

More Publications

Authors
Title
Published In

Bertin E, Piccoli M, Franzin C, Nagy A, Mileikovsky M, De Coppi P, Pozzobo M. (2015)

Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system.

Stem Cell Res 2015 Nov;15:510-513. doi:10.1016/j.scr.2015.09.009

Lepage SI, Nagy K, Sung HK, Kandel R, Nagy A, Koch TG.

Generation, characterization and multi-lineage potency of mesenchymal-like progenitors derived from equine induced pluripotent stem cells.

Stem Cells Dev. 2015 Nov 5 [Epub ahead of print] PMID: 26414480.

Furio L, Pampalakis G, Michael IP, Nagy A, Sotiropoulou G, Hovnanian A.

KLK5 Inactivation Reverses Cutaneous Hallmarks of Netherton Syndrome.

PLoS Genet. 2015 Sep 21;11(9):e1005389. doi: 10.1371/journal.pgen.1005389. eCollection 2015. PMID: 26390218.

Woltjen K, Kim SI, Nagy A.

The piggyBac transposon as a platform technology for somatic cell reprogramming studies in mouse.

Methods Mol Biol. 2015 Jul 1. [Epub ahead of print]. PMID: 26126450.

Benevento M, Tonge PD, Puri MC, Nagy A, Heck AJ, Munoz J.

Fluctuations in hisone H4 isoforms during cellular reprogramming monitored by middle-down proteomics.

Proteomics. 2015 Sep;15(18):3219-31. doi: 10.1002/pmic.201500031. Epub 2015 Aug 24. PMID: 26080932.

Shakiba N, White CA, Lipsitz YY, Yachie-Kinoshita A, Tonge PD, Hussein SM, Puri MC, Elbaz J, Morrissey-Scoot J, Li M, Munox J, Benevento M, Rogers IM, Hanna JH, Heck AJ, Wollscheid B, Nagy A, Zandstra PW.

CD24 tracks divergent pluripotent states in mouse and human cells.

Nat Commun. 2015 Jun 16;6:7329. doi: 10.1038/ncomms8329. PMID: 26076835.

Cunnigham SC, Siew SM, Hallwirth CV, Bolitho C, Sasaki N, Garg G, Michael IP, Hetherington NA, Carpenter K, de Alencastro G, Nagy A, Alexander IE.

Modeling correction of severe urea cycle defects in the growing murine liver using a hybird recombinant adeno-associated virus/piggyBac tranposase gene delivery system.

Hepatology. 2015 Aug;62(2):417-28. doi: 10.1002/hep.27842. Epub 2015 May 23. PMID: 26011400

Salewski RP, Mitchell RA, Li L, Shen C, Milekovskaia M, Nagy A, Fehlings MG.

Transplantation of Induced Pluripotent Stem Cell-Derived Neural Stem Cells Mediate Functional Recovery Following Thoracic Spinal Cord Injury Through Remyelination of Axons.

Stem Cells Transl Med. 2015 Jul;4(7):743-54. doi: 10.5966/sctm.2014-0236. Epub 2015 May 15. PMID: 25979861

Yang M, Yang SL, Herrlinger S, Liang C, Dzieciatkowska M, Hansen KC, Desai R, Nagy A, Niswander L, Moss EG, Chen JF.

Lin28 promotes the proliferative capacity of neural progenitor cells in brain development.

Development. 2015 May 1;142(9):1616-27. doi: 10.1242/dev.120543. PMID: 25922525.

Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knöpfel T, Boyden ES, Reid RC, Carandini M, Zeng H.

Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance.

Neuron. 2015 Mar 4;85(5):942-58. doi: 10.1016/j.neuron.2015.02.022. PMID: 25741722.

Andrews P, Baker D, Benvinisty N, Miranda B, Bruce K, Brüstle O, Choi M, Choi YM, Crook J, de Sousa P, Dvorak P, Freund C, Firpo M, Furue M, Gokhale P, Ha HY, Han E, Haupt S, Healy L, Hei Dj, Hovatta O, Hunt C, Hwang SM, Inamdar M, Isasi R, Jaconi M, Jekerle V, Kamthorn P, Kibbey M, Knezevic I, Knowles B, Koo SK, Laabi Y, Leopoldo L, Liu P, Lomax G, Loring J, Ludwig T, Montgomery K, Mummery C, Nagy A, Nakamura Y, Nakatsuji N, Oh S, Oh SK, Otonkoski T, Pera M, Peschanski M, Pranke P, Rajala K, Rao M, Ruttachuk R, Reubinoff B, Ricco L, Rooke H, Sipp D, Stacey G, Suemori H, Takahashi T, Takada K, Talib S, Tannenbaum S, Yuan BZ, Zeng F, Zhou Q.

Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI).

Regen Med. 2015;10(2 Suppl):1-44. doi: 10.2217/rme.14.93. PMID: 2567526.

Hussein SM, Puri MC, Tonge PD, Benevento M, Corso AJ, Clancy JL, Mosbergen R, Li M, Lee DS, Cloonan N, Wood DL, Munoz J, Middleton R, Korn O, Patel HR, White CA, Shin JY, Gauthier ME, Lê Cao KA, Kim JI, Mar JC, Shakiba N, Ritchie W, Rasko JE, Grimmond SM, Zandstra PW, Wells CA, Preiss T, Seo JS, Heck AJ, Rogers IM, Nagy A.

Genome-wide characterization of the routes to pluripotency.

Nature 2014 Dec 11;516(7530):198-206. doi:10.1038/nature14046. Epub: 2014 Dec 10. PMID: 25503233.

Tonge PD, Corso AJ, Monetti C, Hussein SM, Puri MC, Michael IP, Li M, Lee DS, Mar JC, Cloonan N, Wood DL, Gauthier ME, Korn O, Clancy JL, Preiss T, Grimmond SM, Shin JY, Seo JS, Wells CA, Rogers IM, Nagy A.

Divergent reprogramming routes lead to alternative stem-cell states.

Nature. 2014 Dec 11;516(7530):192-7. doi: 10.1038/nature14047. PMID: 25503232.

Benevento M, Tonge PD, Puri MC, Hussein SM, Cloonan N, Wood DL, Grimmond SM, Nagy A, Munoz J, Heck AJ.

Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

Nat Commun. 2014 Dec 10;5:5613. doi: 10.1038/ncomms6613. PMID: 25494451.

Clancy JL, Patel HR, Hussein SM, Tonge PD, Cloonan N, Corso AJ, Li M, Lee DS, Shin JY, Wong JJ, Bailey CG, Benevento M, Munoz J, Chuah A, Wood D, Rasko JE, Heck AJ, Grimmond SM, Rogers IM, Seo JS, Wells CA, Puri MC, Nagy A, Preiss T.

Small RNA changes en route to distinct cellular states of induced pluripotency.

Nat Commun. 2014 Dec 10;5:5522. doi: 10.1038/ncomms6522. PMID: 25494340.

Lee DS, Shin JY, Tonge PD, Puri MC, Lee S, Park H, Lee WC, Hussein SM, Bleazard T, Yun JY, Kim J, Li M, Cloonan N, Wood D, Clancy JL, Mosbergen R, Yi JH, Yang KS, Kim H, Rhee H, Wells CA, Preiss T, Grimmond SM, Rogers IM, Nagy A, Seo JS.

An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator.

Nat Commun. 2014 Dec 10;5:5619. doi: 10.1038/ncomms6619. PMID: 25493341.

Li H, Qu D, McDonald A, Isaac SM, Whiteley KJ, Sung HK, Nagy A, Adamson SL.

Trophoblast-specific reduction of VEGFA alters placental gene expression and maternal cardiovascular function in mice.

Biol Reprod. 2014 Oct;91(4):87. doi: 10.1095/biolreprod.114.118299. Epub 2014 Aug 13. PMID: 25122061.

Martinez-Fernandez A, Nelson TJ, Reyes S, Alekseev AE, Secreto F, Perez-Terzic C, Beraldi R, Sung HK, Nagy A,Terzic A.

iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes.

Circ Cardiovasc Genet. 2014 Oct;7(5):667-76. doi: 10.1161/CIRCGENETICS.113.000298. Epub 2014 Jul 30. PMID: 25077947.

Onishi K, Tonge PD, Nagy A, Zandstra P.

Local BMP-SMAD1 signaling increases LIF receptor-dependent STAT3 responsiveness and primed-to-naive mouse pluripotent stem cell conversion frequency.

Stem Cell Reports. 2014 Jun 6;3(1):156-68. doi: 10.1016/j.stemcr.2014.04.019. PMID: 25068129.

Michael IP, Westenskow PD, Hacibekiroglu S, Cohen Greenwald A, Ballios BG, Kurihara T, Li Z, Warren CM, Zhang P, Aguilar E, Donaldson L, Marchetti V, Baba T, Hussein SM, Sung HK, Iruela-Arispe ML, Rini JM, van der Kooy D, Friedlander M, Nagy A.

Local acting Sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye.

EMBO Mol Med. 2014 May 1;6(5):604-23. doi: 10.1002/emmm.201303708. PMID: 24705878.

Harris MG, Hulseberg P, Ling C, Karman J, Clarkson BD, Harding JS, Zhang M, Sandor A, Christensen K, Nagy A, Sandor M, Fabry Z.

Immune privilege of the CNS is not the consequence of limited antigen sampling.

Sci Rep. 2014 Mar 21;4:4422. doi: 10.1038/srep04422. PMID: 24651727

Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ,Gómez-Marín C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH,Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S,Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC,Gomez-Skarmeta JL, Nóbrega MA.

Obesity-associated variants within FTO form long-range functional connections with IRX3.

Nature. 2014 Mar 20;507(7492):371-5. doi: 10.1038/nature13138. Epub 2014 Mar 12. PMID: 24646999.

Behringer R, Gertsensten M, Vintersten Nagy K, and Nagy A.

Manipulating the Mouse Embryo: A Laboratory manual. 4th edition.

Cold Spring Harbor Press, Cold Spring Harbor, New York.

Huang K, Shen Y, Xue Z, Bibikova M, April C, Liu Z, Cheng L, Nagy A, Pellegrini M, Fan JB, Fan G.

A panel of CpG methylation sites distinguishes human embryonic stem cells and induced pluripotent stem sells.

Stem Cell Reports. 2013 Dec 26;2(1):36-43. doi: 10.1016/j.stemcr.2013.11.003. eCollection 2014. PMID: 24511466.

Choi YS, Zhang Y, Xu M, Yang Y, Ito M, Peng T, Cui Z, Nagy A, Hadjantonakis AK, Lang RA, Cotsarelis G, Andl T, Morrisey EE, Millar SE.

Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis.

Cell Stem Cell. 2013 Dec 5;13(6):720-33. doi: 10.1016/j.stem.2013.10.003. PMID: 24315444.

DeVeale B, Brokhman I, Mohseni P, Babak T, Yoon C, Lin A, Onishi K, Tomilin A, Pevny L, Zandstra PW, Nagy A, van der Kooy D.

Oct4 is required ∼E7.5 for proliferation in the primitive streak.

PLoS Genet. 2013 Nov;9(11):e1003957. doi: 10.1371/journal.pgen.1003957. Epub 2013 Nov 14. PMID: 24244203.

Westenskow PD, Kurihara T, Aguilar E, Scheppke EL, Moreno SK, Wittgrove C, Marchetti V, Michael IP, Anand S, Nagy A, Cheresh D, Friedlander M.

Ras pathway inhibition prevents neovascularization by repressing endothelial cell sprouting.

J Clin Invest. 2013 Nov;123(11):4900-8. PMID: 24084735.

Nagy A.

Secondary cell reprogramming systems: as the years go by.

Curr Opin Genet Dev. 2013 Oct;23(5):534-9. doi: 10.1016/j.gde.2013.07.004. Epub 2013 Aug 19. PMID: 23968685.

Muñoz DM, Singh S, Tung T, Agnihotri S, Nagy A, Guha A, Zadeh G, Hawkins C.

Differential transformation capacity of neuro-glial progenitors during development.

Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14378-83. doi: 10.1073/pnas.1303504110. Epub 2013 Aug 13. PMID: 23942126.

Kim M, Park HJ, Seol JW, Jang JY, Cho YS, Kim KR, Choi Y, Lydon JP, Demayo FJ, Shibuya M, Ferrara N, Sung HK, Nagy A, Alitalo K, Koh GY.

VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodeling during pregnancy.

EMBO Mol Med. 2013 Sep;5(9):1415-30. doi: 10.1002/emmm.201302618. Epub 2013 Aug 2. PMID: 23853117.

Faiz M and Nagy A.

Induced Pluripotent Stem Cells and Disorders of the Nervous System: Progress, Problems, and Prospects.

Neuroscientist. 2013 Jun 24. [Epub ahead of print] PMID: 23797497.

Han H, Irimia M, Ross PJ, Sung HK, Alipanahi B, David L, Golipour A, Gabut M, Michael IP, Nachman EN, Wang E, Trcka D, Thompson T, O'Hanlon D, Slobodeniuc V, Barbosa-Morais NL, Burge CB, Moffat J, Frey BJ, Nagy A, Ellis J, Wrana JL, Blencowe BJ.

MBNL proteins repress ES-cell-specific alternative splicing and reprogramming.

Nature. 2013 Jun 13;498(7453):241-5. doi: 10.1038/nature12270. Epub 2013 Jun 5. PMID: 23739326.

Li Z, Michael IP, Zhou D, Nagy A, Rini JM.

Simple piggyBac transposon-based mammalian cell expression system for inducible protein production.

Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5004-9. doi: 10.1073/pnas.1218620110. Epub 2013 Mar 8. PMID: 23476064.

Haenebalcke L, Goossens S, Dierickx P, Bartunkova S, D’Hont J, Haigh K, Hochepied T, Wirth D, Nagy A, Haigh JJ.

The ROSA26-iPSC Mouse: A Conditional, Inducible, and Exchangeable Resource for Studying Cellular (De)Differentiation.

Cell Rep. 2013 Feb 21;3(2):335-41. doi: 10.1016/j.celrep.2013.01.016. Epub 2013 Feb 7. PMID: 23395636.

Sung HK, Doh KO, Son JE, Park JG, Bae Y, Choi S, Nelson SML, Cowling R, Nagy K, Michael IP, Koh GY, Adamson SL, Pawson A, Nagy A.

Adipose Vascular Endothelial Growth Factor Regulates Metabolic Homeostasis through Angiogenesis.

Cell Metab. 2013 Jan 8;17(1):61-72. doi: 10.1016/j.cmet.2012.12.010. PMID: 23312284.